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Prioritization of Chemicals According to
the Degree of Hazard in the Aquatic
Environment
by Dean R. Branson*

Chemicals designated as "priority pollutants" or "toxics" have received special attention recently
because the discharge ofthese compounds into public water is to be restricted to the maximum possible with
little regard to water quality or economics. The selection ofmany ofthe 129 priority cemicals was not based
on an objective scientific assessment ofthe exposure and effect data. In fact, for some compounds, including
cenaphthene and 4-chlorophenyl-phenyl ether, the necessary data for listing were non-existent.
As an alternative to arbitrarily listing or delisting chemicals for the purpose of prioity control, this paper

suggests a promising scientific approach to selecting priority chemicals based on the principles of hazard
assessment for chemicals in the aquatic environment. According o the hypothesis, the highest priority
chemicals are those with the least margin of safety, defined as the gap between the no-observable-effect
concentrations and the ambient exposure concentrations.
The no-observable-effect concenrations are based on the results ofchronic or sensitive life stage tests with

aquatic organisms and the acceptable daily intake rate for fish eates. The ambient exposure concentrations
are levels either measured in fish and water, or roughly estimated from a simple nomogram that requires
only two of the following three factors: environmental release rate, ratio of dissipation to bioconcentration
potential, or ambient residues in fish.
The chemicals studied to illustrate this approach to prioritizing chemicals based on hazard assessment

are: polychlorinated biphenyls, di-2-ethylhexyl phthalate, linear alkylbenzene sulfonate, and pentachloro-
phenol.

Introduction
The principles of hazard assessment used in this

paper are those developed at a recent workshop in
Pellston, Michigan (1). At this workshop, represen-
tatives of government, industries, and universities
reached a consensus that hazard in water could be
assessed only after both effect and exposure of the
chemical substance had been taken into account.
Figure 1 illustrates the relationship. In general, the
margin between the no-effect concentration and the
expected exposure concentration in water is the
statement of hazard or margin of safety. Estimates of
these two concentrations are made in a sequential
fashion, and the error limits on these two estimates
narrow as the amount ofinformation about biological
effects and exposures increases. It is important to
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recognize that the essential environmental informa-
tion can be estimated even from preliminary screen-
ing studies but the error limits on these estimates are
usually quite large. To illustrate the use of hazard
assessment techniques in prescreening priority
chemicals, no emphasis on error limits was made.

This concept of hazard assessment is fairly new in
the field of aquatic toxicology. Another new concept
in our field is regulation of those specific chemicals
which represent the greatest cause for concern for
pollution in the aquatic environment. The 1977
amendments to the Clean Water Act contained a list
of 65 categories of substances, which was later de-
fined in terms of 129 specific priority chemicals (2).
These chemicals are to receive the maximum possi-
ble discharge control in effluents. This paper
suggests combining these two concepts into an ob-
jective selection criterion for prescreening priority
pollutants. Such selection criteria are needed, since
Congress provided a process for adding and sub-
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FIGURE 1. Principle of sequential hazard assessment of chemicals in the aquatic environment. Large
gaps between the no observable adverse effect concentration and the exposure concentration
indicate a low degree of potential hazard and vice versa.

tracting chemicals from the list of priority chemicals.
If the hypothesis is correct that principles of hazard
assessment can be employed as a prescreen for
selecting priority chemicals, then it may be possible
to distinguish between priority chemicals and those
chemicals whiih more appropriately should be clas-
sified as chemicals with less potential to cause harm
to man or the environment. The discharge of chemi-
cals that might be removed from the list will also be
regulated but to the extent that water quality is pro-
tected rather than to the maximum possible extent
with little regard to economics.

Case Study Chemicals
Four chemicals were selected to illustrate the

principles of hazard assessment-two with fairly
high environmental release rates, di-2-ethylhexyl
phthalate (DEHP) and linear alkylbenzene sulfonate
(LAS), and two other chemicals with moderately
high environmental release rates, polychlorinated
biphenyls (PCB), and pentachlorophenol (PCP).
The environmental release rate, according to a

National Science Foundation (NSF) workshop (3), is
the maximum amount of material which may enter
public receiving water and is calculated from the
amount produced minus the amount consumed, de-
stroyed, or contained. The estimates of environ-
mental release rates in the NSF workshop were
based on 1972 production records. For DEHP and
LAS, the maximum environmental release rate in
1972 was 100 million to 500 million lb/yr, and for PCB
and PCP 10 million to 50 million lb/yr. The distinction
between production rates and environmental release
rates is important, because rarely is all of the chemi-
cal produced released to the aquatic environment.

In order to assess the hazard of chemicals in the
aquatic environment, certain environmental values
must be measured or estimated. Table 1 shows the
environmental information for the case study chemi-
cals. This information includes the maximum con-
centrations ofthe case study chemicals which should
not cause an observed adverse effect to fish-eaters,
including man, i.e., acceptable daily intake (ADI)
values combined with fish residue data. The ADI
values were derived from long-term feeding studies
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Table 1. Essential information for assessing the hazard of chemicals in the aquatic environment.

Hazard to fish Hazard to fish eaters

Ambient exposure Ambient ADI residues
concentration in NOEC Safety concentration in for fish Safety

Chemical water, mg/l. (ppm)a mg/l. (ppm)b margin" fish, Lg/g (ppm)a eatersd marginsc

LAS <0.05 0.5 >10 <0.5 750 1500
PCP <0.000033 -0.005 150 0.01 9 900
DEHP -0.0025 0.003 -1.2 -10 180 18
PCB 0.000010 0.005 500 >5 <5 <1

aSamples from areas outside the mixing zone ofan effluent; large lakes, rivers, and estuaries; concentration ofchemical in true solution.
bNOEC = no observable adverse effect concentration in chronic or sensitive life-stage tests.
eSafety margin = no observable adverse effect concentration/ambient exposure concentration.
dFish residue = acceptable daily intake (ADI) jug/g/day x 60 kg fish eater/0.2 kg fish eaten per day.

in rodents and assumed a safety factor of 100. For the
case study chemicals, the following ADI values were
used: DEHP, 0.6 mg/kg-day (4); LAS, -2.5 mg/kg-
day (5); PCB, -0.016 mg/kg-day (6); PCP, 0.03 mg/
kg-day (7). It is appropriate to use long-term ex-
posure data since the hazard assessment of the case
study chemicals was based on ambient concen-
trations of the chemicals.

Ifall the information in Table 1 is available, hazard
assessment is an easy task, involving merely dividing
the no-effect concentration by the exposure con-
centration, but rarely, if ever, is all the information
available to everyone's satisfaction. Typically, the
data least available or reliable are the ambient ex-
posure concentrations. As an alternative to direct
measurements of the exposure concentration, it
seemed reasonable that rough estimates of exposure
could be made for the purpose of prioritizing chemi-
cals, by examining the quantities released to the
aquatic environment, the resulting residues in fish,
the bioconcentration potential, and the degradation
potential.

Correlation Between Release
Rates, Persistence/Accumulation,
and Fish Residues

It was assumed in reviewing the available infor-
mation for this paper that in the future more and
better data will be available on the ambient concen-
trations of chemicals in fish tissue. It was further
assumed that these concentrations were a direct
function of the persistence/accumulation properties
and environmental release rates.
The PCB residues in Table 1 of 5 ppm were for the

years 1972 and 1975 and were increasing with time
(6). The linear alkylbenzene sulfonate residues in
fish are estimated to be less than 0.5 ppm based on
limited measurements of the concentrations in water
and bioconcentration factors of approximately ten

(8). Pentachlorophenol measurements are about 0.01
ppm and declining (D. Stallings, personal communi-
cation, 1979). The DEHP residues are not well
documented. Characteristically, they are measured
as by GC-MS MIe 149, which is the common mass
ion for all phthalate esters. The limited monitoring
data which are available suggest that the ambient
levels in fish tissue ofDEHP are at least 10 ppm (9).
The third part of this correlation deals with the

persistence/accumulation. A composite of these
properties was represented as a ratio of dissipation
and bioconcentration potential; ratio DIS/BCF. Dis-
sipation was assumed to be the sum of both the
evaporative loss of the chemical from water and the
rate of photochemical, hydrolytical, or biological
degradation (Table 2). Since quantitative measure-
ments of the rate of degradation were either not
readily available or comparable, relative rates were
assigned, where 100 was the maximum rate and a
minimum rate of 1 was chosen for substances like
metal ions which generally do not degrade or evapo-
ratefrom water. For LAS, a relative degradation rate
of 100 was assigned based on the first-order rate
constant for C02 evolution, 0.10/day as reported by
Larson (10). For PCP, a relative degradation rate of
50 was assigned based on 100% disappearance in
various soils after 4 hr to 30 days (11). For DEHP, a
relative rate of 10 was assigned based on 50%o of the
parent compound remaining in a hydrosoil test after
14 days (12). For PCP, a relative degradation rate of 1
was assigned based on the second-order rate con-
stant for 14CO2 evolution from "4C-[2,5,2'-tri-
chlorobiphenyl] in activated sludge, 0.009 g/g-hr
(13). In the future, rate constants should replace
these arbitrarily assigned relative rates.
The bioconcentration factors used to calculate the

ratio of dissipation to bioconcentration potential
were all measured values (Table 3) and relative dissi-
pation rates were obtained from Table 2. What can
be seen by this ratio of dissipation to bioconcentra-
tion potential is that the greater the dissipation and
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Table 2. Dissipation of chemicals from water.

Water Degradation Relative
solubility, Evaporation biol/photo dissipation rate

Chemical mg/l.a Ilk x 100 (relative rate)b (DIS)

LAS > 10,000 <0.1 100 100
PCP 8,000 <0. 1 50 50
DEHP 6 1 10 11
PCBC 0.00025 4 1 5

apH 7.5
blOO is maximum value combining both evaporation and degradation rates. Metal ion dissipation has minimum value of 1.
CRepresentative PCB isomer; 2,5,2'-trichlorobiphenyl (13).

Table 3. Ratio of dissipation to bioconcentration potential
of chemicals in aquatic environment.

Relative
Dissipation Factor Ratio

Chemical (DIS)a (BCF) DIS/BCF

LAS 100 Job 10
PCP 50 200c 0.25
DEHP 11 800d 0.014
PCB 5 50,000e 0.0001

alO is maximum value combining both evaporation and degra-
dation rates. Metal ion dissipation was a minimum value of 1.
bData of Comotto et al. (8).
CData of Dow Chemical Co. (11).
dData of Branson (15).
eData of Nisbet (6).

the lower the bioconcentration potential, the larger
the value of the ratio. Chemicals like LAS receive a
large number, DIS/BCF = 10, because of high
degradation and low bioconcentration potential;
chemicals like PCB's with high bioconcentration
factors and low dissipation potential receive very
small numbers, DIS/BCF = 0.0002. The nomogram

100.0
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for predicting the unknown ambient exposures (Fig.
2) illustrates an empirical relationship between fish
residues, environmental release rates, and the ratio
of dissipation to bioconcentration potential. Recog-
nizing that the straight lines plotted on this graph are
only made from two points each, the absolute posi-
tion of the line is tentative at best. It seems reason-
able, however, to assume that higher environmental
release rates would result in a parallel line higher on
this graph and lower release rates would result in a
lower line. The graph does serve to illustrate the
hypothesis that if any two of the three pieces of
information are known, the third piece can be esti-
mated. For example, if the DIS/BCF ratio for a
chemical is 0.001 and its release rate is about 107
lb/yr, then the predicted ambient residues in fish are
about 1 ppm, but if the environmental release rate is
about 108 lb/yr then the ambient residues in fish
would be about 100 ppm. Also, given that fish resi-
due data (Cf) are available, measured or estimated
from Figure 2, the ambient exposure concentration
in water (Cm) can be estimated by dividing by the
bioconcentration factor: Cw,, = C/BCF. The shaded

.0001 .001 .01 .1 1.0 10.0
Ratio DIS/BCF

Relative Persistence/Accumulation: Early Warning Zone <0.1

FIGURE 2. Preliminary nomogram for predicting the unknown ambient exposures. The ambient concen-
tration of a chemical in water, C., can be roughly estimated from the ambient concentration in fish,
Cf, and the bioconcentration factor at steady state, BCF, i.e., C,, = Cf/BCF.
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area illustrates qualitatively that chemicals with high
environmental release rates and/or persistence/
accumulation properties will end up in this zone.
Most of the chemicals, on the other hand, will end up
outside this zone, since these curves were drawn
with chemicals with known fish residues and fairly
high environmental release rates.
Correlations of environmental properties of

chemicals derived from large data bases confirm that
most of the chemicals are outside this zone of con-
cern. Vieth and Konasewich (personal communica-
tions, 1979) have shown that only about two-thirds of
the 2,100 chemicals manufactured or used around
the Great Lakes have octanol-water partition coeffi-
cients suggestive of low concern for fish residues.
Also Bailey (personal communications, 1979), indi-
cated approximately two-thirds of 600 chemicals
screened for biodegradability in a simple biochemi-
cal oxygen demand test yielded 30%o or more BOD in
20 days, indicating a low degree of persistence in the
aquatic environment. Both of these properties, ac-
cumulation and persistence, appear to be related to
low water solubility (Table 2). In general, the en-
vironmental fate of the majority of chemicals cur-
rently manufactured and used by society is charac-
terized by a low degree of persistence and accumu-
lation and will, therefore, be of low hazard because
the ambient exposure concentrations are low.

Hazard of Ambient Concentration
in Wtr to Aquatic Organisms

Hazard Assessment
Figure 3 compares the margin between the no ef-

fect concentrations and the ambient exposure con-
centrations for the case study chemicals. A recip-
rocal of hazard was used to show hazard by the
height ofthe bar graph, i.e., narrow margins of safety
yield tall bar graphs and vice versa. The PCB ex-
ample illustrates a case in which residues in fish
would cause concern to fish eaters but the ambient
levels of PCBs in water would cause little or no
concern to aquatic life. On the other hand, DEHP
illustrates a case in which the aquatic organisms
could be at risk but not the fish eaters. Both of these
materials fall across an arbitrary line where the mar-
gin between effect and exposure is equal to or less
than five. A safety margin of five appears to be a
reasonable criterion for distinguishing between
chemicals that should and should not be classified as
"priority." Neither LAS nor PCP appears to be rea-
sonably classified as a priority chemical.
The safety margin concept was also employed by

Klapow and Lewis (14) in selecting water quality
standards in the marine environment. More impor-
tantly, the safety margin of the typical standard was
less than a factor offive above the ambient exposure
concentration, e.g., for copper, ambient 0.002 mg/l.,
standard 0.005 mg/l., margin of safety 2.5; and for

Hazard of Ambient Concentration
in Fish to Fish Eaters

PCB DEHP LAS PCP

ASafety Margins = No Observable Adverse Effect Concentration
Ambient Exposure Concentration

BPriority Chemicals are those with Safety Margins Less Than Five (1/Hazard = 0.2) According
to this Working Hypothesis

FIGURE 3. Safety margins ofchemicals in the aquatic environment. The numerical values associated with
each chemical are only meant to illustrate the concept of prioritization of chemicals according to
safety margins, i.e., degree of hazard. Confidence limits and difference in geographical sites for
ambient measurements should be considered before using these values for more than illustrating the
concept.
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zinc, ambient 0.008 mg/I., standard 0.02 mg/I., mar-
gin of safety 1.5. Therefore the margin of safety
factor of five used here to select priority chemicals is
conservative.

Research Needs
The basic premise for suggesting areas of research

to improve hazard assessments of any chemical in
the aquatic environment for any decision-making
values is that exposure and effect concentrations
must be available for both and that the biggest re-
search need is estimating exposure concentrations.
The following areas of research are very important.

It is necessary to develop and validate test
methods for measuring rates of degradation, evap-
oration, and bioconcentration of chemicals in water.
These test methods must accommodate chemicals
with low water solubility (less than 1 ppm), and the
results should be reported as measured rate con-
stants. With more experience in generating rate con-
stant data, it is hoped that some preliminary esti-
mates of their value can be based on structure
through various regression correlations.
The lack of reliable information on the amount of

chemicals released to the environment is the single
largest source of error in environmental hazard as-
sessment (Baughman, personal communications,
1978). The approach used by the 1975 NSF Work-
shop seems promising and should be updated. It
takes the use patterns of industrial chemicals into
account.
There is a glaring lack of field studies to show that

laboratory data correctly forecast the fate and effects
of chemicals in the real world. Predictive models
need to be validated for several different aquatic
environments based on time-concentration data with
adequate material balance accountability.

It would be valuable to add more data points (case
study chemicals) to Figure 2, as data are generated
from more and better analysis of fish and water sam-
ples, DIS/BCF, ratios and environmental release
rates. These data should be used in prioritizing and
deprioritizing chemicals.

Conclusions
Principles of hazard assessment can be used as a

prescreen in selecting priority chemicals. These
principles involve estimates or measurements of
both the exposure and the no effect concentrations.
In addition to narrow safety margins, chemicals
should not be classified as priority chemicals unless
there is evidence of (a) potential to cause significant
human toxicity including carcinogenicity, muta-
genicity and teratogenicity; or (b) analytical de-

tection at toxicologically significant concentrations
in five or more controllable point sources.
Rough estimates of ambient exposure concentra-

tions can be made if environmental release rate and
the ratio of dissipation (DIS) to bioconcentration
potential (BCF) are known. Also, the ratio DIS/BCF
can be used as an early warning index for chemicals
or used for predicting fish residues or environmental
release rates.
Under the principles of environmental hazard as-

sessment, both PCB and DEHP would be candidates
for a list of priority chemicals. Neither LAS or PCP
would be priority chemicals.
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